Setting the Scene

Pressing boundaries for societal developments:

At local and global scales it is increasingly appreciated that societal developments are approaching the limits of the capacities of the ecological systems and the Earth life support system.

Population growth, Wikepedia, UN

Planetary boundaries, Steffen et al. 2015[1]
Setting the Scene

Pressing boundaries for societal developments:

Significant signs of the back-coupling between civilizations and living conditions for civilization are observable.

IPCC homepage

Scenario A2 – heterogeneous world

Scenario B1 – convergent world

CO2 emissions constant at 2000 level
Setting the Scene

Pressing boundaries for societal developments:

Significant signs of the back coupling between civilizations and living conditions for civilization are observable.
Setting the Scene

Infrastructures accommodating 7.5 billion people

Cities in the world (+1 million inhabitants) ~ 500
Bridges in the USA ~ 600,000
Global road network > 13 million km
Global rail network > 1 million km
Airports ~ 50,000
Offshore platforms in the world ~ 6,500
Dams in the world ~ 45,000
Nuclear (civil) reactors in the world ~ 440

......

......
Setting the Scene

Built environment alone

Contributes with ~10% of GDP in Europe

Responsible for 50% of global energy consumption

Concrete responsible for ~8% of global CO2 emissions

Responsible for ~90% of global material consumption (weight)
Setting the Scene

Targets for mitigation of climate change

EU aims to cut CO2 emissions by 40% in 2030 and 80% in 2050 relative to 1990 levels.
Setting the Scene

Climate change/sustainability

McKinsey and Co Ltd
Contents of Presentation

Sustainability and resilience – a view across the sciences

Decision Support Framework

Probabilistic systems representation
 - Robustness of systems
 - Resilience of systems
 - Consequences to health and environment
 - Sustainability of systems

Principal example

Conclusions and outlook
Sustainability and Resilience – a View Across the Sciences

Sustainability:
Gro Harlin Bruntland report (1987) – Our Common Future

“Humanity has the ability to make development sustainable to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs”
Sustainability and Resilience – a View Across the Sciences

Sustainability (economy):

Strong sustainability assumes that exhaustible resources and human capital are strictly complimentary.

Weak sustainability assumes that exhaustible resources and human capital are exchangeable.

Solow (1974) studies equity from the perspective of weak sustainability and concludes that **exhaustible resources shall be used – optimally** - according to the same principles as reproducible resources.

“Earlier generations may “draw down” exhaustible resources as long as they use them optimally and exchange them optimally with reproducible resources”

Solow (1991) proposes that gains from exploitation of **exhaustible resources are transferred unreduced** to future generations in terms of investments.
Sustainability and Resilience – a View Across the Sciences

Sustainability (environment):
Kates et al. (2001) recommends to explore and assess the relation between resilience and sustainability and propose to **utilize decision support** systems as a means to identify sustainable paths of societal developments.

Steffen et al. (2015) introduce the concept of **Planetary Boundaries** as a concept for representing the capacities of the Earth System (Earth Life Support System - ELSS).

Hauschild (2015) suggests to utilize **quantitative sustainability assessments** to assess the aggregate impacts of human activities at global level with respect to the main parameters controlling safe operating conditions (ELSS) for the planetary system.
Sustainability and Resilience – a View Across the Sciences

Resilience (definitions):
Pimm (1984) - Resilience....the time it takes till a system which has been subjected to a disturbance returns to its original mode and level of functionality

Holling (1996) - Resilience....the measure of disturbance which can be sustained by a system before it shifts from one equilibrium to another

Cutter (2010) - Resilience.... capacity of a community to recover from disturbances by their own means

Bruneau (2009) – Resilience.... a quality inherent in the infrastructure and built environment; by means of redundancy, robustness, resourcefulness and rapidity

National Academy of Science (NAS, USA) - Resilience....a systems ability to plan for, recover from and adapt to adverse events over time
Sustainability and Resilience – a View Across the Sciences

Insights

Sustainability is an organizing principle and a process

Sustainability as well as resilience at any scale necessitate preservation of stable living conditions – Earth Life Support System (ELSS) functions

Resilience at global scale is equivalent to sustainability

At smaller scales there is a tradeoff between sustainability/efficiency and resilience

Infrastructures have a very significant environmental foot print and must be designed, operated and managed optimally with due consideration of the environment, safety and health and economy
Sustainability and Resilience – a View Across the Sciences

Strategies for sustainable and resilient systems

Efficiency/optimality
Diversity
Redundancy
Temporally optimized solutions
Planned and smart renewals
Optimal balance between sustainability/efficiency and resilience
Calibration of and fulfillment of performance criteria with respect to environmental impacts, Planetary Boundaries, safety and economy
Options for buying information and changing strategies
Additional data collection, monitoring and control
Decision Support Framework

Hierarchies of management
- City/community level
- State level
- Federal level
- Global level

- Geo hazards
- Anthropological hazards
- Natural resources
- Environment

Taxes/contributions
Decision Support Framework

Operator/owner organisation

Global

North sea

Fields

Wave environment
Current
Geology
Decision Support Framework

Exposure events lead to exposure, which in turn affects economy, health, and environment. Direct consequences of exposure lead to constituent damage states, while indirect consequences lead to system damage states affecting functionality.
Decision Support Framework

Exposure

System damage states

Direct consequences

Economy
Health
Environment

Indirect consequences

System damage states

Functionality

Condition

Exposure events

Economy
Health
Environment

System

Exposure

Economy
Health
Environment
Probabilistic System Representation

Interlinked systems

- Social system
- Anthropological hazard system
- Geo hazard system
- Ecological/earth life support system
- Infrastructure system
- Regulatory system
- Monitoring and control system
Hazards and disturbances

Type 1: “Large scale averaging events”
- low probability/high consequences

Type 2: “Seepage events”
- high probability/low consequences

Type 3: “Non-averaging events”
- low probability/extreme consequences

Type 4: “Fake news events”
- as for Type 1-3
Probabilistic System Representation

Direct and indirect consequences

Phase 1
Disturbance effects

- Hazards/threats
- Constituent damage states

Phase 2
Redistribution effects

- System damage states

Damages and failure caused directly by disturbances

Damages and failures during internal redistribution

Direct consequences are associated with damages and failures of the constituents in phase 1 - marginally

Indirect consequences are associated with loss of functionality of the system caused by damages and failures in phase 1 and phase 2
It is assumed that all relevant scenarios have been identified

\[S = (i, p(i), c_{D,I}(i), c_{D,P}(i), c_{ID}(i))) \]

\[i = 1, 2, \ldots, n_s \]

\[I_R(i) = \frac{c_D(i)}{c_T(i)} \]

\[I_R(i) = \frac{c_{D,I}(i)}{c_{D,I}(i) + c_{D,P}(i)} \]

\[I_R(i) = \frac{c_{D,I}(i) + c_{D,P}(i)}{c_{D,I}(i) + c_{D,P}(i) + c_{ID}(i)} \]
Probabilistic System Representation

Probabilistic resilience modeling

Service provision

Total service loss

Capacity

Time

Time of disturbance event

Time to recover
Probabilistic System Representation

Probabilistic resilience modeling

Service provision

Total service loss

Capacity

Time of disturbance event

Time to recover

Robustness
Probabilistic System Representation

Probabilistic resilience modeling

Service provision

Total service loss

Preparedness, adaptive capacity

Robustness

Time

Time of disturbance event

Time to recover

Resilience modeling

\[f_f(t) = \lim_{\Delta t \to 0} \frac{P\left(\{R(\tau) > S(\tau) \forall \tau \in [0,t]\} \cap \{R(t + \Delta t) \leq S(t + \Delta t)\}\right)}{\Delta t} \]
Probabilistic System Representation

Consequences to health, environment and economy

Impacts to health and safety are addressed through the relative utility function comprised by the Life Quality Index (LQI) (Nathwani et al, 1997)

Impacts to the environment are addressed through:
- Quantitative Life Cycle Analysis (substances/energy) (Hauschild, 2015)
- Eco-system services (space/landscape/capacities) (Constanza et al, 1997)

Impacts to the economy are addressed through:
- Monetary benefits (production functions)
- Monetary losses (production functions)
Probabilistic System Representation

Life Quality Index

The LQI can be expressed as:

\[L(g, \ell) = g^q \ell \]

\[q = \frac{w}{(1-w)\beta} \]

\[SWTP = \frac{g}{q} \frac{d e_d}{e_d} \approx \frac{g}{q} C_x dm = G_x dm \]

Societal Value of a Statistical Life:

\[SVSL = \frac{g}{q} e_d \]
Probabilistic System Representation

Life quality index
Coherence to the LQI principle can be assessed empirically by (Kübler and Faber (2005)):

\[
\mathcal{I} = g^q \left[g_0^{-q} \right]_0
\]

Regression constant

Data from 193 nations is collected and analyzed

71 nations corresponding to 70% of the Earth’s population conform with the LQI
Probabilistic System Representation

Matter book-keeping - Life Cycle Analysis (LCA)

System states

LCA quantifications

Consequences

Elementary flows

CO2 emissions
Ozone depletion
Human toxicity
Respiratory inorganics
Ionizing radiation
Noise
Photochemical ozone formation
Acidification
Eutrophication
Ecotoxicity
Landuse
Resource depletion
Desiccation/salination

Human health
Natural environment
Planetary boundaries
Natural resources
Sustainability modeling

Global Planetary Boundaries provide a means for allocating capacities to different societal activities.

Local /national and sector wise allocation of capacities:
- Built environment
- Energy production and distribution
- Food production
- Transportation
-
Probabilistic System Representation

Sustainability modeling

For given sector, geographical area or project sustainability failure is expressed in terms of exceedance of Planetary Boundaries

\[f_f(t) = \lim_{\Delta t \to 0} \frac{P\left(R(\tau) > S(\tau) \forall \tau \in [0,t] \cap \{ R(t + \Delta t) \leq S(t + \Delta t) \} \right)}{\Delta t} \]
Probabilistic System Representation

Engineered systems management

Maximize LQI

Constraints on:

- annual resilience failure probability
- annual sustainability failure probability (LQI and ELSS)
- other requirements imposed wrt e.g. Inclusive Wealth Index
Probabilistic System Representation

Expected value of contribution to GDP

Decision alternatives \(p \) ordered with decreasing probability of resilience failure

Annual probabilities of resilience failure \(P_{RF} \) and sustainability failure \(P_{SF} \)
Probabilistic System Representation

Overall framework
Principal Examples

Faber, M.H., Miraglia, S., Qin, J. and Stewart, M.G. Bridging Resilience and Sustainability – Decision Analysis for Design and Management of Infrastructure Systems, accepted for publication in Journal of Sustainable and Resilient Infrastructure 2017.
Conclusions and Outlook

Resilience and sustainability can be framed and quantified in the context of decision analysis.

The LQI provides a strong means for representing societal preferences for “time” and societal developments.

LCA and the Planetary Boundaries concept facilitate quantification of sustainability.

Optimal systems management strategies can be identified accounting for political value settings (e.g. IWI).
Conclusions and Outlook

Sustainability as well as resilience at any scale necessitate preservation of stable living conditions – Earth Life Support functions

Resilience at global scale is equivalent to sustainability

Requirements to resilience and sustainability must be defined in probabilistic terms

There are quantifiable tradeoffs between sustainability/efficiency and resilience

More research on these tradeoffs must be achieved in the nearer future to facilitate timely and informed societal decision making
Thanks for your attention 😊

mfn@civil.aau.dk

www.r3sbe.civil.aau.dk

www.matrisk.com

Risk
Reliability
Resilience
Sustainability
Built
Environment